

HILTI ANCHOR ROD SPECIFICATIONS AND TECHNICAL DATA

Standard Pre-cut Anchor Rods and Extended Anchor Rod Program

As global leaders in chemical anchoring systems, Hilti has provided threaded rod for anchoring applications in materials such as concrete and masonry for many years.

As your partner, we offer a broad portfolio of high quality pre-cut Hilti anchor rods that in conjunction with the Hilti injectable mortars and adhesive capsules provide reliable and high performing fastening points, and enable the installer to complete chemical anchoring applications efficiently, hassle-free, without compromising the budget.

Hilti HIT-Z Anchor rod (SafeSet™)

For use with Hilti HIT-HY 200 Injectable mortar, the Hilti HIT-Z Anchor rod provides the ultimate in safety and load capacity combined with up to 60% faster installation due to zero-cleaning SafeSet[™] Technology*

Hilti HAS Threaded rod

Broad portfolio including high-strength, hot-dipped galvanized, and stainless steel for the demand of increased performance and usability with capsule systems

Hilti HIT-V Threaded rod

Reliable Hilti quality to fulfill the basic needs of chemical anchoring applications in conjunction with injectable adhesive systems

^{*} Zero-cleaning with SafeSet[™] Technology with the Hilti HIT-Z Anchor rod is currently for use at a base material temperature above 41 °F (+5 °C). For use below 41 °F (+5 °C) and for full installation procedures refer to the product instructions for use on the product packaging or contact Hilti.

HIT-V, HAS AND HIT-Z ANCHOR RODS

The following technical data is for standard length threaded rods as shown on page 9, and for HIT-Z anchor rods. For new custom length and larger diameter threaded rod and large diameter options see page 10.

Specifications and physical properties of Hilti HIT-V, HAS, and HIT-Z threaded rods with standard lengths

	Threaded Rod Specification	Units	Minimum Specified Ultimate Strength, f _{uta}	Minimum Specified Yield Strength 0.2% Offset, f _{ya}	f _{uta} / f _{ya}	Elongation, Min. % ⁹	Reduction of Area, Min. %	Specification for Nuts and Washers
	HIT-V Conforms to ultimate strength of ASTM A 307 Grade A ^{1,10}	psi (MPa)	60,000 (414)	37,500 ⁽²⁾ (259)	1.60 (2)	10 ⁽³⁾	-	Nuts: SAE J995 Grade 5 Washers: ASTM F844, HV and ANSI B18.22.1 Type A Plain
	HAS-E ISO 898-1 class 5.8 4,10	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10 ⁽⁵⁾	-	Nuts: SAE J995 Grade 5 Washers: ASTM F844, HV and ANSI B18.22.1 Type A Plain
TEEL	HAS-E-B ASTM A 193, Grade B7 ^{6,10}	psi	125,000 (7)	105,000	1.19	16 (B7)	50 (B7)	Nuts: ASTM A 194, Grade 2H, Heavy, or ASTM A563-15 Grade C
CARBON STEEL	ASTM F 1554 Grade 105 ^{10,12,13}	(MPa)	(862) (7)	(724)	1.19	15 (Gr. 105)	45 (Gr. 105)	Washers: ASTM F436 Type 1 and ANSI B18.22.1 Type A Plain
CAR	HAS-E-B HDG ASTM A 193, Grade B7 ^{6,11}	psi	125,000 (7)	105,000	1.19	16 (B7)	50 (B7)	Nuts: ASTM A 194, Grade 2H, Heavy, or ASTM A563-15 Grade C
	ASTM F 1554 Grade 105 ^{11,12,13}	(MPa)	(862) (7)	(724)	1.19 15 (Gr. 105)		45 (Gr. 105)	Washers: ASTM F436 Type 1 and ANSI B18.22.1 Type A Plain
	HIT-Z Anchor rod (HIT-HY 200 only)	psi	94,200	75,300	1.25	8	20	Nuts: ASTM A 563 Grade A Washers: ASTM F844, HV and
	Unalloyed carbon steel ¹⁰	(MPa)	(650)	(519)	1.25	0	20	ANSI B18.22.1 Type A Plain
	HAS-R 304 / 316 3/8-in. to 5/8-in. AISI Type 304 /	psi	100,000	65,000	1.54	20	_	
Ц	316 ASTM F 593 CW1 ⁸	(MPa)	(690)	(448)	1.04	20		Nuts: ASTM F 594 Washers: ASTM A 240 and
S STEEL	HAS-R 304 / 316 3/4-in. to 1-in. AISI Type 304 /	psi	85,000	45,000	1.89	25	_	ANSI B18.22.1 Type A Plain
STAINLESS	316 ASTM F 593 CW2 ⁸	(MPa)	(586)	(310)	1.00	20		
STAI	HIT-Z-R Anchor rod (HIT-HY 200 only)	psi	94,200	75,300				Nuts: ASTM F 594
	(HIT-HY 200 only) Grade 316	(MPa)	(650)	(519)	1.25	8	20	Washers: ASTM A 240 and ANSI B18.22.1 Type A Plain

Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength 1

2 ASTM A 307 does not have a minimum specified yield strength. Published yield strength is based on Hilti manufacturer specifications and maximum value of fue / fue = 1.6 as specified in ACI 318-14 section R17.4.1.2.

3 Hilti HIT-V threaded rods do not meet the minimum elongation requirements for ASTM A 307. HIT-V needs to be considered a brittle steel element.

4 Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs

5 HAS-E needs to be considered a brittle steel element.

6 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service
7 For designs according to CSA A23.3-14 Annex D, the maximum value of f_{ut} is 860 MPa (124,700 psi) per clause D.6.1.2.
8 Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

9 Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898-1, which is based on 5d elongation after fracture A,
 10 All carbon steel threaded rods are zinc plated in accordance with ASTM F1941 Fe/Zn 5 AN, with nuts and washers zinc plated in accordance with ASTM B633 SC 1 Type III.
 11 HAS-E-B HDG rods hot-dip galvanized in accordance with ASTM A 153.

12 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

13 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318 CHAPTER 17 (APPENDIX D)

The following steel design information is for Hilti standard threaded rod lengths and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HIT-V and HAS threaded rods and Hilti HIT-Z Anchor rods for use with ACI 318 Chapter 17

Design Inforn	nation	Symbol	Units			Nomina	I Rod Diam	ieter (in.)		
				3/8	1/2	5/8	3/4	7/8	1	1-1/4
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	.875	1.0	1.25
			(mm)	(9.5)	(12.7)	(15.9)	19.1)	(22.2)	(25.4)	(31.8)
Rod effective	cross-sectional area	A _{se}	in.²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
	Γ	se	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
\sim		N _{sa}	lb	4,650	8,515	13,560	20,070	-	36,340	-
A30.	Nominal strength as governed by steel strength	54	(kN)	(20.7)	(37.9)	(60.3)	(89.3)	-	(161.6)	-
Σ Į		V _{sa}	lb	2,790	5,110	8,135	12,040	-	21,805	-
V ASTM A: Grade A ^{1,2}			(kN)	(12.4)	(22.7)	(36.2)	(53.6)	-	(97.0)	-
HIT-V ASTM A307 Grade A ^{1,2}	Reduction factor, seismic shear	α _{v,seis}	-		-		0.7	-		
Ī	Steel strength reduction factor Φ for tension ³	Φ	-				0.65			
	Steel strength reduction factor Φ for shear ³	Φ	-	5 000	10.000	10.005	0.60	00.475	40.015	70.000
		N _{sa}	lb (LN)	5,620	10,290	16,385	24,250	33,475	43,915	70,260
-98-	Nominal strength as governed by steel strength		(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
0 8 0 8 2 9		V _{sa}	lb (LN)	3,370	6,175	9,830	14,550	20,085	26,350	42,155
S-E ISO 89 Class 5.81	Reduction factor, seismic shear		(kN)	(15.0)	(27.5)	(43.7)	(64.7) 0.7 ⁴	(89.3)	(117.2)	(187.5)
HAS-E ISO 898-1 Class 5.8 ¹	,	α _{v,seis}	-		-			-		
I	Steel strength reduction factor Φ for tension ³ Steel strength reduction factor Φ for shear ³	Φ Φ	-				0.65			
		Ψ	- Ib	9,690	17,740	28,250	41,815	57,715	75,715	121,135
and 105		N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
HAS-E-B and HAS-E-B HDG ASTM A 193 B7 ¹ and ASTM F 1554 Gr. 105 ⁵	Nominal strength as governed by steel strength		lb	5,815	10,645	16,950	25,090	34,630	45,430	72,680
93 E F		V _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
S - S - E A - C - E A - C - E	Reduction factor, seismic shear	α	-	(20.0)	(+7.4)	(70.4)	0.74	(104.0)	(202.1)	(020.0)
A A A A	Steel strength reduction factor Φ for tension ³	α _{v,seis} Φ					0.75			
AS ⁻ AS	Steel strength reduction factor Φ for shear ³	Φ	-				0.65			
			lb	7,305	13,375	21,305	31,470	-	-	-
nV5 NV5		N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-	-
or rd 8Mi	Nominal strength as governed by steel strength	-	lb	3,215	5,885	9,375	13,850	-	-	-
20C or 1		V _{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-	-
HIT-Z Anchor rod (HIT-HY 200 only) AISI 1038 or 18MnV5 ¹	Reduction factor, seismic shear	α _{v,seis}	-	1.0		0.65	. ,		-	
E E S	Steel strength reduction factor Φ for tension ³	Φ.	-		0.	65			-	
Also a	Steel strength reduction factor Φ for shear ³	Φ	-			60			-	
			lb	7,750	14,190	22,600	28,435	39,245	51,485	-
∑ <u>-</u>		N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
HAS-R M F 593, CW inless Steel ¹	Nominal strength as governed by steel strength		lb	4,650	8,515	13,560	17,060	23,545	30,890	-
HAS-R M F 593, nless St		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
IM F Binle	Reduction factor, seismic shear	α _{v,seis}	-				0.74			
ASTI	Steel strength reduction factor Φ for tension ³	Φ	-				0.65			
	Steel strength reduction factor Φ for shear ³	Φ	-				0.60			
-		N I	lb	7,305	13,375	21,305	31,470	-	-	-
' roc ∍l [±]	Nominal strangth as governed by steel strangth	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-	-
chor 0 or Stee	Nominal strength as governed by steel strength	V	lb	4,385	8,025	12,785	18,885	-	-	-
Anc 20 3ss		V _{sa}	(kN)	(19.5)	(35.7)	(56.9)	(84.0)	-		-
Z-R ZHY ainl€	Reduction factor, seismic shear	α _{v,seis}	-	1.0	0.75	0.	65		-	
N 는 원 는	Steel strength reduction factor Φ for tension ³	Φ	-	0.65 -						
= -				- 0.60 -						

1 Values provided for Hitti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.

2 HIT-V does not comply with % elongation requirements of ASTM A 307 Grade A steel.
3 For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318 D.4.4.

 For HT-RE 500 V3, the value of q_{value} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
 5 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318 CHAPTER 17 (APPENDIX D)

The following are strength design values calculated from data on the previous page. This is intended for adhesive anchors designed in accordance with ACI 318-14 Chapter 17 (and Appendix D for earlier editions of ACI 318) and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design strength for carbon steel Hilti HIT-V and HAS threaded rods and Hilti HIT-Z Anchor rods according to ACI 318-14 Chapter 17

	AST	HIT-V M A307 Grade	e A 4	ISC	HAS-E) 898 Class 5	.8 ⁴	A	B and HAS-E STM A193 B7 STM F 1554 G	5	HIT-Z (HIT-HY 200 only) AISI 1038 or 18MnV5 ⁴		
Nominal anchor diameter	Tensile¹ ΦN.,	Shear ² ΦV _{sa}	Seismic Shear ³ ΦV _{sa,eq}	Tensile¹ ΦN.,	Shear ² ΦV	Seismic Shear ³ ΦV _{sa,eq}	Tensile¹ ΦN _{sa}	Shear ² ΦV	Seismic Shear³ ΦV _{sa,eq}	Tensile¹ ΦN	Shear ⁶ ΦV.	Seismic Shear ³ $\Phi V_{sa,eq}$
in.	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kŇ)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
0./0	3,025	1,675	1,175	3,655	2,020	1,415	7,265	3,780	2,645	4,750	1,930	1,930
3/8	(13.5)	(7.5)	(5.2)	(16.3)	(9.0)	(6.3)	(32.3)	(16.8)	(11.8)	(21.1)	(8.6)	(8.6)
1/2	5,535	3,065	2,145	6,690	3,705	2,595	13,300	6,915	4,840	8,685	3,530	2,295
1/2	(24.6)	(13.6)	(9.5)	(29.8)	(16.5)	(11.5)	(59.2)	(30.8)	(21.5)	(38.6)	(15.7)	(10.2)
5/8	8,815	4,880	3,415	10,650	5,900	4,130	21,190	11,020	7,715	13,840	5,625	3,655
5/6	(39.2)	(21.7)	(15.2)	(47.4)	(26.2)	(18.4)	(94.3)	(49.0)	(34.3)	(61.6)	(25.0)	(16.3)
3/4	13,045	7,225	5,060	15,765	8,730	6,110	31,360	16,305	11,415	20,480	8,310	5,400
	(58.0)	(32.1)	(22.5)	(70.1)	(38.8)	(27.2)	(139.5)	(72.5)	(50.8)	(91.1)	(37.0)	(24.0)
7/8		-	-	21,755	12,050	8,435	43,285	22,505	15,755	-	-	-
1/0	-	-	-	(96.8)	(53.6)	(37.5)	(192.5)	(100.1)	(70.1)	-	-	-
1	23,620	13,085	9,160	28,540	15,805	11,065	56,785	29,525	20,670	-	-	-
	(105.1)	(58.2)	(40.7)	(127.0)	(70.3)	(49.2)	(252.6)	(131.3)	(91.9)	-	-	-
1 1 / /	-	-	-	45,670	25,295	17,705	90,850	47,240	33,070	-	-	-
1-1/4	-	-	-	(203.1)	(112.5)	(78.8)	(404.1)	(210.1)	(147.1)	-	-	-

Tensile = ΦA_{sev} f_{uta} as noted in ACI 318 -14 17.4.1.2
 Shear = Φ 0.60 A_{sev} f_{uta} as noted in ACI 318 -14 17.5.1.2b
 Seismic Shear = Φ_{Veet} ΦV_{set} : Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-E B7, and HAS-E B7 HDG rods. Refer to ESR-3814.

4 HIT-V and HAS-E threaded rods and HIT-Z Anchor Rods are considered brittle steel elements. HIT-V does not comply with % elongation requirements of ASTM A307 Grade A steel.

5 HAS-E-B and HAS-E-B HDG rods are considered ductile steel elements. 6 Shear value for HIT-Z Anchor Rod is based on static shear testing with $\Phi V_{sa} \le \Phi 0.60 A_{seV} f_{ula}$ as noted in ACI 318-14 17.5.1.2b. 7 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hitli 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Steel design strength for stainless steel Hilti HAS-R threaded rods and stainless steel Hilti HIT-Z-R Anchor rods according to ACI 318 Appendix D

Nominal		AS-R Stainless Ste AISI 304/316 SS C		HIT-Z-R (HIT-HY 200 only) Stainless Steel ⁴					
anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ФV _{sa} lb (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear⁵ ΦV _{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{sa,eq}$ Ib (kN)			
0./0	5,040	2,790	1,955	4,750	2,630	2,630			
3/8	(22.4)	(12.4)	(8.7)	(21.1)	(11.7)	(11.7)			
1/0	9,225	5,110	3,575	8,695	4,815	3,610			
1/2	(41.0)	(22.7)	(15.9)	(38.7)	(21.4)	(16.1)			
E (0	14,690	8,135	5,695	13,850	7,670	4,985			
5/8	(65.3)	(36.2)	(25.3)	(61.6)	(34.1)	(22.2)			
0./4	18,480	10,235	7,165	20,455	11,330	7,365			
3/4	(82.2)	(45.5)	(31.9)	(91.0)	(50.4)	(32.8)			
7 /0	25,510	14,125	9,890	-	-	-			
7/8	(113.5)	(62.8)	(44.0)	-	-	-			
1	33,465	18,535	12,975	-	-	-			
	(148.9)	(82.4)	(57.7)	-	-	-			

Tensile = ΦA_{sen} f_{utt} as noted in ACI 318-14 17.4.1.2
 Shear = Φ 0.60 A_{sen} / f_{utt} as noted in ACI 318-14 17.5.1.2b
 Seismic Shear = α_{vest} ΦV_{as} : Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.
 HAS-R Stainless Steel Threaded rods and HIT-Z-R Anchor rods are considered brittle steel elements.

5 Shear value for HIT-Z-R Anchor rod is based on static shear testing with $\Phi V_{sa} < \Phi$ 0.60 $A_{sa} \sqrt{f}_{uta}$ as noted in ACI 318-14 17.5.1.2b.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14 ANNEX D

The following steel design information is for Hilti standard threaded rod lengths and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HIT-V and HAS threaded rods and Hilti HIT-Z Anchor rods for use with CSA A23.3-14 Annex D

Design Inforr	nation	Symbol	Units			Nomina	I Rod Diam	neter (in.)		
				3/8	1/2	5/8	3/4	7/8	1	1-1/4
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
		-	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Rod effective	e cross-sectional area	A _{se}	in. ² (mm ²)	0.0775 (50)	0.1419 (92)	0.226 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)
ભ્			lb	4,650	8,515	13,560	20,070	-	36,340	-
eA¹		N _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(89.3)	-	(161.6)	-
rad	Nominal strength as governed by steel strength		lb lb	2,790	5,110	8,135	12,040	-	21,805	-
НТ-V 307 G		V _{sa}	(kN)	(12.4)	(22.7)	(36.2)	(53.6)	-	(97.0)	-
HIT-V ASTM A307 Grade A¹₂	Reduction factor, seismic shear	α _{v,seis}	-				0.7	1		<u>. </u>
M	Steel strength reduction factor R for tension ³	R	-				0.70			
AS	Steel strength reduction factor R for shear ³	R	-				0.65			
4			lb	5,620	10,290	16,385	24,250	33,475	43,915	70,260
5.8		N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
ass	Nominal strength as governed by steel strength		lb	3,370	6,175	9,830	14,550	20,085	26,350	42,155
HAS-E 3-1 Clas		V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
HAS-E ISO 898-1 Class 5.8 ¹⁴	Reduction factor, seismic shear	α _{v,seis}	-				0.74			
80	Steel strength reduction factor R for tension ³	R	-				0.70			
	Steel strength reduction factor R for shear ³	R	-				0.65			
Q2 Q2		N	lb	9,665	17,695	28,180	41,710	57,575	75,530	120,845
9 g v	Nominal strength as governed by steel strength	N _{sa}	(kN)	(43.0)	(78.7)	(125.4)	(185.5)	(256.1)	(336.0)	(537.5)
드 므 프 프	Nominal strength as governed by steel strength	V _{sa}	lb	5,800	10,615	16,910	25,025	34,545	45,320	72,505
Е-Е- 1905 1552		v _{sa}	(kN)	(25.8)	(47.2)	(75.2)	(111.3)	(153.7)	(201.6)	(322.5)
HAS-E-B and HAS-E-B HDG ASTM A 193 B7 and ASTM F 1554 Gr. 105⁵	Reduction factor, seismic shear	α _{v,seis}	-				0.74			
AST H H	Steel strength reduction factor R for tension ³	R	-		0.80					
× ×	Steel strength reduction factor R for shear ³	R	-				0.75			
151		N _{sa}	lb	7,305	13,375	21,305	31,470	-	-	-
VIN)	Nominal strength as governed by steel strength	- sa	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-	-
200 c		V _{sa}	lb	3,215	5,885	9,375	13,850	-	-	-
Anc 4 21 8 01		sa	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-	-
HIT-Z Anchor rod (HIT-HY 200 only) AISI 1038 or 18MnV5 ¹	Reduction factor, seismic shear	α _{v,seis}		1		0.65			-	
E E ISI	Steel strength reduction factor R for tension ³	R	-			70			-	
	Steel strength reduction factor R for shear ³	R	-			65			-	
>		N _{sa}	lb	7,750	14,190	22,600	28,435	39,245	51,485	-
eel, C	Nominal strength as governed by steel strength		(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
AS-R F 593, CW ess Steel ¹		V _{sa}	lb	4,650	8,515	13,560	17,060	23,545	30,890	-
		_	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
H ASTM Stainle	Reduction factor, seismic shear	α _{v,seis}	-				0.74			
∢ ∾	Steel strength reduction factor R for tension ³	R	-				0.70			
	Steel strength reduction factor R for shear ³	R	-	7.005	10.075	01.005	0.65		1	
p <		N _{sa}	lb (LN)	7,305	13,375	21,305	31,470	-	-	-
or n only feel	Nominal strength as governed by steel strength		(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-	-
200 s St		V _{sa}	lb (kN)	4,385	8,025 (35.7)	12,785 (56.9)	,	-	-	-
HIT-Z-R Anchor rod (HIT-HY 200 only) Stainless Steel ¹	Reduction factor, seismic shear	-	(kN)	(19.5) 1	0.75		(84.0) 65	-	-	
T-Z- HT-I Staii		α _{v,seis}		'	I		00			
ᆂᆂᄬ	Steel strength reduction factor R for tension ³	R	-			70			-	
	Steel strength reduction factor R for shear ³	К	-	0.65 -						

Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. (D.2) and Eq. (D.31). Nuts and washers must be appropriate for rod strength.
 HIT-V does not comply with % elongation requirements of ASTM A 307 Grade A steel.

 For use with the load combinations of CSA A23.3-14 Clause 8.
 For HIT-RE 500 V3, the value of α_{value} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14 ANNEX D

The following are strength design values calculated from data on the previous page. This is intended for adhesive anchors designed in accordance with CSA A23.3-14 Annex D and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel factored resistance for carbon steel Hilti HIT-V and HAS threaded rods and Hilti HIT-Z Anchor rods according to CSA A23.3-14 Annex D

Nominal	AST	HIT-V ASTM A307 Grade A 4			HAS-E 0 898 Class 5	5.8 ⁴	A	B and HAS-E STM A193 B STM F 1554 (7 5	HIT-Z (HIT-HY 200 only) AISI 1038 or 18MnV5 ⁴		
anchor diameter in.	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile¹ N _{sar} Ib (kN)	Shear ⁶ V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)
3/8	2,765 (12.3)	1,540 (6.9)	1,080 (4.8)	3,345 (14.9)	1,860 (8.3)	1,300 (5.8)	6,570 (29.2)	3,695 (16.4)	2,585 (11.5)	4,345 (19.3)	1,775 (7.9)	1,775 (7.9)
1/2	5,065 (22.5)	2,825 (12.6)	1,975 (8.8)	6,125 (27.2)	3,410 (15.2)	2,385 (10.6)	12,035 (53.5)	6,765 (30.1)	4,735 (21.1)	7,960 (35.4)	3,250 (14.5)	2,115 (9.4)
5/8	8,070 (35.9)	4,495 (20.0)	3,145 (14.0)	9,750 (43.4)	5,430 (24.2)	3,800 (16.9)	19,160 (85.2)	10,780 (48.0)	7,545 (33.6)	12,675 (56.4)	5,180 (23.0)	3,365 (15.0)
3/4	11,940 (53.1)	6,650 (29.6)	4,655 (20.7)	14,430 (64.2)	8,040 (35.8)	5,630 (25.0)	28,365 (126.2)	15,955	(49.7)	18,725 (83.3)	7,650	4,975 (22.1)
7/8	-	-		19,915 (88.6)	11,095 (49.4)	7,765 (34.5)	39,150 (174.1)	22,020 (97.9)	15,415 (68.6)	-		
1	21,620 (96.2)	12,045 (53.6)	8,430 (37.5)	26,125 (116.2)	14,555 (64.7)	10,190 (45.3)	51,360 (228.5)	28,890 (128.5)	20,225 (90.0)	-	-	-
1-1/4	-	-	-	41,805 (186.0)	23,290 (103.6)	16,305 (72.5)	82,175 (365.5)	46,220 (205.6)	32,355 (143.9)	-	-	-

Tensile = A_{seN}Φ_s f_{ut} R as noted in CSA A23.3-14 Eq. D.2.
 Shear = A_{seN}Φ_s f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vasi} Φ_s t_{us} : Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-E-B, and HAS-E-B HDG rods. Refer to ESR-3814.

4 HIT-V and HAS-E threaded rods and HIT-Z Anchor Rods are considered brittle steel elements. HIT-V does not comply with % elongation requirements of ASTM A307 Grade A steel. 5 HAS-E-B and HAS-E-B HDG rods are considered ductile steel elements.

6 Shear value for HIT-Z Anchor Rod is based on static shear testing with V < A v 0 0.60 f R as noted in CSA A23.3-14 Eq. D.31. 7 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hill' 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Steel factored resistance for stainless steel Hilti HAS-R threaded rods and stainless steel Hilti HIT-Z-R Anchor rods according to CSA A23.3-14 Annex D

Nominal	н	AS-R Stainless Sto ASTM F 593 AISI 304/316 SS CW1 and CW2 ⁴	eel	HIT-Z-R (HIT-HY 200 only) Stainless Steel ⁴					
anchor diameter in.	Tensile¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile¹ N _{sar} Ib (kN)	Shear⁵ V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)			
3/8	4,610	2,570	1,800	4,345	2,420	2,420			
3/0	(20.5)	(11.4)	(8.0)	(19.3)	(10.8)	(10.8)			
1/0	8,445	4,705	3,295	7,960	4,435	3,325			
1/2	(37.6)	(20.9)	(14.7)	(35.4)	(19.7)	(14.8)			
5/8	13,445	7,490	5,245	12,675	7,065	4,590			
5/6	(59.8)	(33.3)	(23.3)	(56.4)	(31.4)	(20.4)			
0./4	16,915	9,425	6,600	18,725	10,435	6,785			
3/4	(75.2)	(41.9)	(29.4)	(83.3)	(46.4)	(30.2)			
7/0	23,350	13,010	9,105	-	-	-			
7/8	(103.9)	(57.9)	(40.5)	-	-	-			
1	30,635	17,065	11,945	-	-	-			
I	(136.3)	(75.9)	(53.1)	-	-	-			
1 1/4	49,010	27,305	19,115	-	-	-			
1-1/4	(218.0)	(121.5)	(85.0)	-					

Tensile = A_{seN}Φ_s f_{uta} R as noted in CSA A23.3-14 Eq. D.2.
Shear = A_{seN}Φ_s f_{uta} R as noted in CSA A23.3-14 Eq. D.31.
Seismic Shear = α_{vaei}V_s = .060 f_{uta} R as noted in CSA A23.3-14 Eq. D.31.
Seismic Shear = α_{vaei}V_s = .8eduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.
HAS-R Stainless Steel threaded rods and HIT-Z-R Anchor Rods are considered brittle steel elements.

5 Shear value for HIT-Z-R Anchor Rod is based on static shear testing with $V_{sar} < A_{seV} \Phi_s 0.60 f_{uta} R$ as noted in CSA A23.3-14 Eq. D.31.

TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD)

The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design Method (ASD). This includes Hilti HIT-HY 70 for masonry, HIT-HY 200 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules.

Note:

• Hilti HIT-V threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod does not have a chisel point to break and mix the capsules during installation.

• Hilti HIT-Z Anchor Rods do not have ASD load data since they are only used in conjunction with Hilti HIT-HY 200.

Allowable steel strength for Hilti HIT-V and HAS threaded rods 1

Nominal		T-V 7 Grade A ²		S-E Class 5.8 ²	HAS-E	-B and B HDG \193 B7 1554 Gr. 105 ³	HAS-R Stainless Steel ASTM F593 AISI 304/316 SS CW1 and CW2		
diameter in.	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	
2.0	2,185	1,125	2,640	1,360	4,555	2,345	3,645	1,875	
3/8	(9.7)	(5.0)	(11.7)	(6.0)	(20.3)	(10.4)	(16.2)	(8.3)	
1/0	3,885	2,000	4,700	2,420	8,100	4,170	6,480	3,335	
1/2	(17.3)	(8.9)	(20.9)	(10.8)	(36.0)	(18.5)	(28.8)	(14.8)	
E /9	6,075	3,130	7,340	3,780	12,655	6,520	10,125	5,215	
5/8	(27.0)	(13.9)	(32.6)	(16.8)	(56.3)	(29.0)	(45.0)	(23.2)	
2.14	8,750	4,505	10,570	5,445	18,225	9,390	12,390	6,385	
3/4	(38.9)	(20.0)	(47.0)	(24.2)	(81.1)	(41.8)	(55.1)	(28.4)	
7/0	-	-	14,385	7,410	24,805	12,780	16,865	8,690	
7/8	-	-	(64.0)	(33.0)	(110.3)	(56.8)	(75.0)	(38.7)	
	15,550	8,010	18,790	9,680	32,400	16,690	22,030	11,350	
1	(69.2)	(35.6)	(83.6)	(43.1)	(144.1)	(74.2)	(98.0)	(50.5)	
	-	-	29,360	15,125	50,620	26,080	-	-	
1-1/4	-	-	(130.6)	(67.3)	(225.2)	(116.0)	-	-	

1 Steel strength as defined in AISC Manual of Steel Construction (ASD):

Tensile = $0.33 \times F_u \times Nominal Area$ Shear = $0.17 \times F_u \times Nominal Area$

2 HIT-V and HAS-E threaded rods are considered brittle steel elements. HIT-V does not comply with % elongation requirements of ASTM A307 Grade A steel.

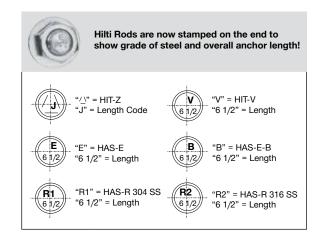
3 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Ultimate steel strength for Hilti HIT-V and HAS threaded rods 1

Nominal anchor	AST	HIT-V M A307 Grad	le A ²	ISC	HAS-E) 898 Class 5	.8 ²	AS	B and HAS-E TM A193 B7 a M F 1554 Gr.	and	HAS-R Stainless Steel ASTM F593 AISI 304/316 SS CW1 and CW2			
diameter in.	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	
3/8	2,905	4,970	2,980	4,495	6,005	3,605	8,135	10,350	6,210	5,035	8,280	4,970	
3/0	(12.9)	(22.1)	(13.3)	(20.0)	(26.7)	(16.0)	(36.2)	(46.0)	(27.6)	(22.4)	(36.8)	(22.1)	
1/2	5,320	8,835	5,300	8,230	10,675	6,405	14,900	18,405	11,040	9,225	14,720	8,835	
1/2	(23.7)	(39.3)	(23.6)	(36.6)	(47.5)	(28.5)	(66.3)	(81.9)	(49.1)	(41.0)	(65.5)	(39.3)	
5/8	8,475	13,805	8,285	13,110	16,680	10,010	23,730	28,760	17,260	14,690	23,010	13,805	
5/8	(37.7)	(61.4)	(36.9)	(58.3)	(74.2)	(44.5)	(105.6)	(127.9)	(76.8)	(65.3)	(102.4)	(61.4)	
3/4	12,545	19,880	11,930	19,400	24,020	14,415	35,120	41,420	24,850	15,050	28,165	16,800	
3/4	(55.8)	(88.4)	(53.1)	(86.3)	(106.8)	(64.1)	(156.2)	(184.2)	(110.5)	(66.9)	(125.3)	(74.7)	
7/8	-	-	-	26,780	32,695	19,620	48,480	56,370	33,825	20,775	38,335	23,000	
//0	-	-	-	(119.1)	(145.4)	(87.3)	(215.6)	(250.7)	(150.5)	(92.4)	(170.5)	(102.3)	
1	22,715	35,345	21,205	35,130	42,705	25,625	63,600	73,630	44,180	27,255	50,070	30,040	
1	(101.0)	(157.2)	(94.3)	(156.3)	(190.0)	(114.0)	(282.9)	(327.5)	(196.5)	(121.2)	(222.7)	(133.6)	
1 1 /4	-	-	-	56,210	66,730	40,035	101,755	115,050	69,030	-	-	-	
1-1/4	-	-	-	(250.0)	(296.8)	(178.1)	(452.6)	(511.8)	(307.1)	-	-	-	

1 Steel strength as defined in AISC Manual of Steel Construction: Yield = $F_y x$ Tensile stress area Tensile = $0.75 \times F_u x$ Nominal Area Shear = $0.45 \times F_u x$ Nominal Area

3 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.


² HIT-V and HAS-E threaded rods are considered brittle steel elements. HIT-V does not comply with % elongation requirements of ASTM A307 Grade A steel.

ORDERING INFORMATION

Hilti HIT-Z Anchor rods for Hilti HIT-HY 200 Anchoring system

		0000	6666	
HIT-Z Carbon Ste	el	HIT-Z-R 316 Stainless	Steel	HIT-Z (-R) Length Code
Description	Qty	Description	Qty	
3/8" x 3-3/8"	40	3/8" x 3-3/8"	40	D
3/8" x 4-3/8"	40	3/8" x 4-3/8"	40	F
3/8"x 5-1/8"	40	3/8"x 5-1/8"	40	н
3/8" x 6-3/8"	40	3/8" x 6-3/8"	40	J
1/2" x 4-1/2"	20	1/2" x 4-1/2"	20	F
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	J
1/2" x 7-3/4"	20	1/2" x 7-3/4"	20	М
5/8" x 6"	12	5/8" x 6"	12	I
5/8" x 8"	12	5/8" x 8"	12	М
5/8" x 9-1/2"	12	5/8" x 9-1/2"	12	Р
3/4" x 6-1/2"	6	3/4" x 6-1/2"	6	J
3/4" x 8-1/2"	6	3/4" x 8-1/2"	6	Ν
3/4" x 9-3/4"	6	3/4" x 9-3/4"	6	Q

Overview of Hilti HIT-V and HAS standard anchor rod program for Hilti chemical anchoring systems¹

HIT-V A307 Steel		HAS-E 5.8 Steel		HAS-E-B High Str. Ste	el	HAS-E-B HD Hot-dipped galva High Str. Ste	anized	HAS-R 304 Stainless Ste		HAS-R 316 Stainless Ste	
Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Q
-	-	3/8" x 3"	10	-	-	-	-	-	-	-	-
3/8" x 4-1/2"	10	3/8" x 4-3/8"	10	-	-	-	-	-	-	-	
3/8" x 5-1/2"	20	3/8" x 5-1/8"	20	3/8" x 5-1/8"	20	-	-	3/8" x 5-1/8"	20	3/8" x 5-1/8"	2
3/8" x 8"	10	3/8" x 8"	10	-	-	-	-	3/8" x 8"	10	3/8" x 8"	1
-	-	3/8" x 12"	10	-	-	-	-	-	-	-	
-	-	1/2" x 3-1/8"	10	-	-	-	-	-	-	-	
1/2" x 4-1/2"	10	1/2" x 4-1/2"	10	-	-	-	-	-	-	-	
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	-	-	1/2" x 6-1/2"	20	1/2" x 6-1/2"	2
1/2" x 8"	10	1/2" x 8"	10	-	-	1/2" x 8"	10	1/2" x 8"	10	1/2" x 8"	1
-	-	1/2" x 10"	10	-	-	-	-	1/2" x 10"	10	1/2" x 11"	
-	-	1/2" x 12"	10	-	-	-	-	-	-	1/2" x 12"	-
5/8" x 6"	10	5/8" x 6"	10	-	-	-	-	-	-	-	1
5/8" x 8"	20	5/8" x 8"	20	5/8" x 7-5/8"	20	5/8" x 8"	20	5/8" x 7-5/8"	20	5/8" x 7-5/8"	2
5/8" x 10"	10	5/8" x 9"	10	-	-	-	-	5/8" x 10"	10	5/8" x 9"	
5/8" x 12"	10	5/8" x 12"	10	-	-	5/8" x 12"	10	-	-	5/8" x 12"	
-	-	5/8" x 17"	10	-	-	-	-	-	-	-	
3/4" x 6"	10	3/4" x 6"	10	-	-	-	-	-	-	-	
3/4" x 8"	10	3/4" x 8"	10	-	-	-	-	-	-	-	
3/4" x 10"	10	3/4" x 10"	10	3/4" x 9-5/8"	10	3/4" x 10"	10	3/4" x 9-5/8"	10	3/4" x 9-5/8"	
-	-	3/4" x 11"	10	-	-	-	-	-	-	3/4" x 10"	
3/4" x 12"	10	3/4" x 12"	10	-	-	-	-	3/4" x 12"	10	-	
-	-	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	-	
3/4" x 16"	10	3/4" x 17"	10	-	-	-	-	3/4" x 16"	10	3/4" x 16"	
-	-	3/4" x 19"	10	-	-	3/4"x20"	10	-	-	-	
-	-	3/4" x 21"	10	-	-	-	-	-	-	-	
-	-	3/4" x 25"	10	-	-	-	-	-	-	-	T
-	-	7/8" x 10"	10	-	-	7/8" x 10"	10	7/8" x 10"	10	7/8" x 10"	
-	-	7/8" x 13"	10	-	-	7/8" x 12"	10	-	-	-	T
-	-	-	-	-	-	7/8" x 16"	10	-	-	7/8" x 16"	
1" x 12"	4	1" x 12"	4	1" x 12"	4	-	-	1" x 12"	4	1" x 12"	
-	-	1" x 14"	2	1" x 14"	2	-	-	-	-	-	T
-	-	1" x 16"	2	1" x 16"	2	1" x 16"	2	-	-	1" x 16"	
-	-	1" x 20"	2	1" x 21"	2	1" x 21"	2	-	-	1" x 20"	\uparrow
-	-	1-1/4" x 16"	4	1-1/4" x 16"	4	1-1/4" x 16"	4	-	-	-	1
	- I	1-1/4" x 22"	4	1-1/4" x 23"	4	_	-	-	-	-	+

1 Additional diameters and lengths see extended anchor rod program on page 19.

EXTENDED HILTI ANCHOR ROD PROGRAM CUSTOM LENGTHS AND LARGER DIAMETERS

The following technical data is for the extended Hilti anchor rod program where Hilti can supply threaded rods with custom lengths instead of the standard lengths as shown on page 9. Additionally, threaded rods with a diameter larger than 1-1/4-inch is provided in this extended rod program. Refer to page 19 for the extended rod portfolio.

Specifications and physical properties of the Hilti Extended Anchor Rod Program

	Threaded Rod Specification	Units	Specified Ultimate Strength, f _{uta}		Minimum Specified Yield	f /f	Elongation	Reduction of Area,	Specification for
	nireaded nod Specification	Units	min	max. 5	Strength 0.2% Offset, f _{ya}	f _{uta} / f _{ya}	Min. %	Min. %	Nuts and Washers
	HAS-V / HAS-V HDG	psi	58,000	80,000	36,000	1.61	23	40	
Ц	ASTM F1554, Grade 36 ^{1,2,8,9}	(MPa)	(400)	(552)	(248)	-	-		Nuts:
CARBON STEEL	HAS-E / HAS-E HDG	psi	75,000	95,000	55,000	1.36	21	30 (3/8" - 2")	ASTM A194/194M or ASTM A563
BO	ASTM F1554, Grade 55 ^{1,2,8,9}	(MPa)	(517)	(655)	(379)	1.00		22 (2-1/4" - 2-1/2")	Washers:
CAI	HAS-B / HAS-B HDG ASTM A193, Grade B7 ^{1,3}	psi	125,000 (6)	150,000	105,000	1.19	16 (B7)	50 (B7)	ASTM F436 Type 1
	ASTM F1554, Grade 105 1,2,8,9	(MPa)	(862) (6)	(1,034)	(724)	1.15	15 (Gr. 105)	45 (Gr. 105)	
	HAS-R 304 /316 3/8-in. to 5/8-in.	psi	100,000	150,000	65,000				
Е	AISI Type 304 / 316 ASTM F 593 CW1 ⁴	(MPa)	(690)	(1,034)	(448)	1.54	20	-	
STEEL	HAS-R 304 /316	psi	85,000	140,000	45,000				Nuts: ASTM F594
STAINLESS	3/4-in. to 1-in. AISI Type 304 / 316 ASTM F 593 CW2 ⁴	(MPa)	(586)	(966)	(310)	1.89	25	-	Washers: ASTM A240 Type A
ST	HAS-R 304 /316	psi	75,000 (7)		30,000				
	1-1/8-in. to 2-in. ASTM A193 Grade 8(M), Class 1 ³	(MPa)	(517) (7)	NA	(207)	2.50 ⁽⁷⁾	7) 30 50		

1 All carbon steel threaded rods are zinc plated in accordance with ASTM F1941 Fe/Zn 5 AN, with nuts and washers zinc plated in accordance with ASTM B633 SC 1 Type III.

All hot-dipped galvanized threaded rods, nuts, and washers are zinc plated in accordance with ASTM F2329.

2 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

<u>Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.</u>
 <u>Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.</u>

5 Maximum specified steel strength according to ASTM standard. NA indicates that ASTM standard does not publish a maximum value.

6 For designs according to CSA A23.3-14 Annex D, the maximum value of f_{us} is 860 MPa (124,700 psi) per clause D.6.1.2.
7 For calculating steel strength, ACI 318-14 section 17.4.1.2 and CSA A23.3-14 clause D.6.1.2 limit the utimate strength to 1.9 f_{us}. Thus, f_{ut} = 57,000 psi (393 MPa) for calculation purposes when determining steel strength in tension (N_{sc}) and shear (V_{sc}).
8 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical

property requirements of ASTM F1554.9 Elongation taken from full sized rod per ASTM F1554. Elongation in 2-inch machined specimen is optional.

EXTENDED HILTI ANCHOR ROD PROGRAM STRENGTH DESIGN ACCORDING TO ACI 318 CHAPTER 17 (APPENDIX D)

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE. Bond strength design information for threaded rods larger than 1-1/4-inch diameter is currently only available for HIT-RE 500 V3.

Steel design information for the Hilti HAS Extended Anchor Rod Program for use with ACI 318 Chapter 17

Design Informa	Design Information				No	ominal Rod	Diameter (in.)	
				3/8	1/2	5/8	3/4	7/8	1
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1
Rod effective cr	oss-sectional area	A _{se}	in.²	0.0775	0.1419	0.226	0.3345	0.4617	0.6057
		se	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)
g		N _{sa}	lb	4,495	8,230	13,110	19,400	26,780	35,130
H 42	Nominal strength as governed by steel strength	sa	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)
HAS-V / HAS-V HDG ASTM F1554 Gr. 36 ^{1,4}		V _{sa}	lb	2,695	4,940	7,865	11,640	16,070	21,080
' / HAS-\ 8TM F15 Gr. 36 ^{1.4}			(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)
-V/ G	Reduction factor, seismic shear	α _{v,seis}	-			0	.6		
AS.	Strength reduction factor ϕ for tension ²	φ	-			0.	75		
	Strength reduction factor φ for shear 2	φ	-			0.	65		
(7 7			lb	5,815	10,645	16,950	25,090	34,630	45,430
HD(Nominal strength as governed by steel strength	N _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
ы Ч	Nominal strength as governed by steel strength		lb	3,490	6,385	10,170	15,055	20,780	27,260
-1AS 554		V _{sa}	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)
E/1	Reduction factor, seismic shear	α _{v,seis}	-			0.1	7 (3)		
HAS-E / HAS-E HDG ASTM F1554 Gr. 55 ¹⁴	Strength reduction factor ϕ for tension ²	φ	-			0.	75		
Ϋ́	Strength reduction factor ϕ for shear ²	φ	-	0.65					
(5	İ. Alaşı da karalışı da kar		lb	9,690	17,740	28,250	41,815	57,715	75,715
HDC		N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)
	Nominal strength as governed by steel strength		lb	5,815	10,645	16,950	25,090	34,630	45,430
HAS 93 1 F1 1 05		V _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
3 / HAS-B 1 A193 B7 STM F155 Gr. 105 ^{1,4}	Reduction factor, seismic shear	α _{v,seis}	-	(/			7 ⁽³⁾	(/	(-)
HAS-B / HAS-B HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹⁴	Strength reduction factor ϕ for tension ²	φ.	-		0.75				
H A	Strength reduction factor ϕ for shear ²	φ	-			0.	65		
		1	lb	7,750	14,190	22,600	28,435	39,245	51,485
- Ste		N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)
888 93, ess	Nominal strength as governed by steel strength		lb	4,650	8,515	13,560	17,060	23,545	30,890
HAS-R Stainless Steel ASTM F593, CW Stainless ¹		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)
Stc STN V St	Reduction factor, seismic shear	α _{v.seis}	-	(_0)	(0)	, ,	7 ⁽³⁾	()	()
S-R C V	Strength reduction factor ϕ for tension ²	φ	-		0.65				
HA	Strength reduction factor ϕ for shear ²	φ Φ							
		IΨ	-	0.60					

1 Values provided for Hitti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.

2 For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.
For HIT-RE 500 V3, the value of α_{cuess} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and

mechanical property requirements of ASTM F1554.

Steel design information for the Hilti HAS Extended Anchor Rod Program for use with ACI 318 Chapter 17 (Continued)

Design Informat	ion	Symbol	Units		No	ominal Rod	Diameter (in.)		
				1-1/8	1-1/4	1-1/2	1-3/4	2	2-1/4	2-1/2
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective cr	oss-sectional area	A _{se}	in.² (mm²)	0.7633 (492)	0.9691 (625)	1.405 (906)	1.90 (1,226)	2.50 (1,613)	3.25 (2,097)	4.00 (2,581)
(7)			lb	44,270	56,210	81,490	110,200	145,000	-	-
Ŭ ⁴		N _{sa}	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
8-V 155∠	Nominal strength as governed by steel strength	N	lb	26,560	33,725	48,895	66,120	87,000	-	-
/ HAS-' TM F15 Gr. 36 ¹		V _{sa}	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
HAS-V / HAS-V HDG ASTM F1554 Gr. 36'	Reduction factor, seismic shear	α _{v.seis}	-			0.6			-	-
AS- A	Strength reduction factor ϕ for tension ²	φ	-			0.75			-	-
I	Strength reduction factor φ for shear ²	φ	-			0.65			-	-
(7 -		N	lb	57,250	72,685	105,375	142,500	187,500	-	-
HD0		N _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
HAS-E / HAS-E HDG ASTM F1554 Gr. 55 ¹	Nominal strength as governed by steel strength	N	lb	34,350	43,610	63,225	85,500	112,500	-	-
		V _{sa}	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
∕⊥ ∎ ₽	Reduction factor, seismic shear		-	0.7 (3)					-	-
AS- STI	Strength reduction factor ϕ for tension ²	α _{v.seis} Φ	-	0.75					-	-
Τ٩	Strength reduction factor ϕ for shear ²	φ	-	0.65					-	-
<u>س</u> ۳		N	lb	95,415	121,140	175,625	237,500	312,500	406,250	500,000
⁴ and	Nominal strength as governed by steel strength	N _{sa}	(kN)	(424.4)	(538.9)	(781.2)	(1,056.4)	(1,390.1)	(1,807.1)	(2,224.1)
5-B 155	Nominal strength as governed by steel strength	M	lb	57,250	72,685	105,375	142,500	187,500	243,750	300,000
8 / HAS-B 1 A193 B7 8TM F155 Gr. 105 ¹		V _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	(1,084.2)	(1,334.5)
	Reduction factor, seismic shear	α _{v.seis}	-				0.7 (3)			
HAS-B / HAS-B HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹	Strength reduction factor φ for tension ²	φ	-		0.75					
<u> </u>	Strength reduction factor φ for shear 2	φ	-				0.65			
j,		N	lb	43,510	55,240	80,085	108,300	142,500	-	-
8(N	Nominal strength as governed by steel strength	N _{sa}	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
Gr. 1 ⁻		V	lb	26,105	33,145	48,050	64,980	85,500	-	
193, 193, ass		V _{sa}	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)	-	-
A A C	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Strength reduction factor ϕ for tension ²	φ	-	0.75					-	-
	$\stackrel{\frown}{=} \stackrel{\checkmark}{\stackrel{\frown}{=}} $ Strength reduction factor ϕ for shear ²					0.65			-	-

1 Values provided for Hitti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and

washers must be appropriate for rod strength. 2 For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of

ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4. 3 For HIT-RE 500 V3, the value of α_{vasies} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

EXTENDED HILTI ANCHOR ROD PROGRAM STRENGTH DESIGN ACCORDING TO ACI 318 CHAPTER 17 (APPENDIX D)

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10. The strength design values are calculated from data on the previous page. This is intended for adhesive anchors designed in accordance with ACI 318-14 Chapter 17 (and Appendix D for earlier editions of ACI 318) and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE. Bond strength design information for threaded rods larger than 1-1/4-inch diameter is currently only available for HIT-RE 500 V3.

Steel design strength for Hilti HAS Extended Anchor Rod Program for use with ACI 318 Chapter 17

		6-V / HAS-V F M F1554 Gr. (HAS-E / HAS-E HDG ASTM F1554 Gr. 55 ^{4,5,6}			AS	B and HAS-B TM A193 B7 a 1 F 1554 Gr. 1	and	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴			
Nominal anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear ² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear ² ΦV Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear ⁶ ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	
3/8	3,370	1,750	1,050	4,360	2,270	1,590	7,270	3,780	2,645	5,040	2,790	1,955	
	(15.0)	(7.8)	(4.7)	(19.4)	(10.1)	(7.1)	(32.3)	(16.8)	(11.8)	(22.4)	(12.4)	(8.7)	
1/2	6,175	3,210	1,925	7,985	4,150	2,905	13,305	6,920	4,845	9,225	5,110	3,575	
.,	(27.5)	(14.3)	(8.6)	(35.5)	(18.5)	(12.9)	(59.2)	(30.8)	(21.6)	(41.0)	(22.7)	(15.9)	
5/8	9,835	5,110	3,065	12,715	6,610	4,625	21,190	11,020	7,715	14,690	8,135	5,695	
	(43.7)	(22.7)	(13.6)	(56.6)	(29.4)	(20.6)	(94.3)	(49.0)	(34.3)	(65.3)	(36.2)	(25.3)	
3/4	14,550	7,565	4,540	18,820	9,785	6,850	31,360	16,310	11,415	18,485	10,235	7,165	
	(64.7)	(33.7)	(20.2)	(83.7)	(43.5)	(30.5)	(139.5)	(72.6)	(50.8)	(82.2)	(45.5)	(31.9)	
7/8	20,085	10,445	6,265	25,975	13,505	9,455	43,285	22,510	15,755	25,510	14,125	9,890	
1/0	(89.3)	(46.5)	(27.9)	(115.5)	(60.1)	(42.1)	(192.5)	(100.1)	(70.1)	(113.5)	(62.8)	(44.0)	
1	26,350	13,700	8,220	34,075	17,720	12,405	56,785	29,530	20,670	33,465	18,535	12,975	
I	(117.2)	(60.9)	(36.6)	(151.6)	(78.8)	(55.2)	(252.6)	(131.4)	(91.9)	(148.9)	(82.4)	(57.7)	
1-1/8	33,205	17,265	10,360	42,940	22,330	15,630	71,560	37,215	26,050	32,635	16,970	10,180	
1-1/0	(147.7)	(76.8)	(46.1)	(191.0)	(99.3)	(69.5)	(318.3)	(165.5)	(115.9)	(145.2)	(75.5)	(45.3)	
1 1 /4	42,160	21,920	13,150	54,515	28,345	19,840	90,855	47,245	33,070	41,430	21,545	12,925	
1-1/4	(187.5)	(97.5)	(58.5)	(242.5)	(126.1)	(88.3)	(404.1)	(210.2)	(147.1)	(184.3)	(95.8)	(57.5)	
1-1/2	61,120	31,780	19,070	79,030	41,095	28,765	131,720	68,495	47,945	60,065	31,235	18,740	
1-1/2	(271.9)	(141.4)	(84.8)	(351.5)	(182.8)	(128.0)	(585.9)	(304.7)	(213.3)	(267.2)	(138.9)	(83.4)	
1.0/4	82,650	42,980	25,790	106,875	55,575	38,905	178,125	92,625	64,835	81,225	42,235	25,340	
1-3/4	(367.6)	(191.2)	(114.7)	(475.4)	(247.2)	(173.1)	(792.3)	(412.0)	(288.4)	(361.3)	(187.9)	(112.7)	
	108,750	56,550	33,930	140,625	73,125	51,190	234,375	121,875	85,315	106,875	55,575	33,345	
2	(483.7)	(251.5)	(150.9)	(625.5)	(325.3)	(227.7)	(1,042.5)	(542.1)	(379.5)	(475.4)	(247.2)	(148.3)	
0.1/4	-	-	-	-	-	-	304,690	158,440	110,910	-	-	-	
2-1/4	-	-	-	-	-	-	(1,355.3)	(704.8)	(493.3)	-	-	-	
0.1/0	-	-	-	-	-	-	375,000	195,000	136,500	-	-	-	
2-1/2	-	-	-	-	-	-	(1,668.1)	(867.4)	(607.2)	-	-	-	

Tensile = ΦA_{ask} f_{ut} as noted in ACI 318-14 17.4.1.2
 Shear = Φ 0.60 A_{ask} f_{ut} as noted in ACI 318-14 17.5.1.2b
 Seismic Shear = α_{(ask} ΦV_{ask} FV_{ask} F

6 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

EXTENDED HILTI ANCHOR ROD PROGRAM LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14 ANNEX D

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE. Bond strength design information for threaded rods larger than 1-1/4-inch diameter is currently only available for HIT-RE 500 V3.

Steel design information for the Hilti HAS Extended Anchor Rod Program for use with CSA A23.3-14 Annex D

Design Informa	tion	Symbol	Units		No	ominal Rod	Diameter (in.)		
				3/8	1/2	5/8	3/4	7/8	1	
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1	
Bod effective c	oss-sectional area	A _{se}	in.2	0.0775	0.1419	0.226	0.3345	0.4617	0.6057	
		, 'se	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	
Q		N _{sa}	lb	4,495	8,230	13,110	19,400	26,780	35,130	
면 ⁴	Nominal strength as governed by steel strength	sa	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	
S-V 155 31.4	Norminal Strongth as governed by Steel Strongth		lb	2,695	4,940	7,865	11,640	16,070	21,080	
' / HAS-\ 8TM F15 Gr. 36¹.⁴		V _{sa}	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	
5-V / HAS-V H ASTM F1554 Gr. 36 ^{1,4}	Reduction factor, seismic shear	α _{v,seis}	-			0	.6			
HAS-V / HAS-V HDG ASTM F1554 Gr. 36'₄	Strength reduction factor R for tension ²	R	-			0.	80			
I	Strength reduction factor R for shear ²	R	-			0.	75			
(7 4			lb	5,815	10,645	16,950	25,090	34,630	45,430	
55 55	Nominal strength as governed by steel strength	N _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	
щĞ			lb	3,490	6,385	10,170	15,055	20,780	27,260	
-1AS 554		V _{sa}	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	
HAS-E / HAS-E HDG ASTM F1554 Gr. 55' ^₄	Reduction factor, seismic shear	α _{v.seis}	-			0.1	7 (3)			
AS- STIV	Strength reduction factor R for tension ²	R	-		0.80					
Ϋ́Α	Strength reduction factor R for shear ²	R	-	0.75						
() —			lb	9,665	17,695	28,180	41,710	57,575	75,530	
+ HDC		N _{sa}	(kN)	(43.0)	(78.7)	(125.4)	(185.5)	(256.1)	(336.0)	
55 ¹	Nominal strength as governed by steel strength		lb	5,800	10,615	16,910	25,025	34,545	45,320	
105 193 105		V _{sa}	(kN)	(25.8)	(47.2)	(75.2)	(111.3)	(153.7)	(201.6)	
a∕⊦ STA Gr.	Reduction factor, seismic shear	α _{v,seis}	-	0.7 (3)					<u> </u>	
HAS-B / HAS-B HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ^{1,4}	Strength reduction factor R for tension ²	R	-			0.	80			
¥∢	Strength reduction factor R for shear ²	R	-			0.	75			
<u></u>			lb	7,750	14,190	22,600	28,435	39,245	51,485	
+ Ste		N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	
ess 193, less	Nominal strength as governed by steel strength		lb	4,650	8,515	13,560	17,060	23,545	30,890	
ainle A F5 tainl		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	
<u> 4 < 5</u> ⊢	Reduction factor, seismic shear	α _{v,seis}	-	(/	()	. ,	7 ⁽³⁾	(····)		
	Strength reduction factor R for tension ²	R	-		0.70					
НА	Strength reduction factor R for shear ²	R	-			-	65			

1 Values provided for Hitti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be appropriate for rod strength.

2 For use with the load combinations of CSA A23.3-14 Clause 8.
3 For HIT-RE 500 V3, the value of α_{vasis} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
4 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Hilti Anchor Rod Specifications and Technical Data

Steel design information for the Hilti HAS Extended Anchor Rod Program for use with CSA A23.3-14 Annex D (Continued)

Design Informat	ion	Symbol	Units		No	ominal Rod	Diameter (in.)		
				1-1/8	1-1/4	1-1/2	1-3/4	2	2-1/4	2-1/2
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective cr	oss-sectional area	A _{se}	in.² (mm²)	0.7633 (492)	0.9691 (625)	1.405 (906)	1.90 (1,226)	2.50 (1,613)	3.25 (2,097)	4.00 (2,581)
G			lb	44,270	56,210	81,490	110,200	145,000	-	-
H ⁴	Nominal strength as governed by steel strength	N _{sa}	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
5-< 155 <	Nominal strength as governed by steel strength	V	lb	26,560	33,725	48,895	66,120	87,000	-	-
HAS-V / HAS-V HDG ASTM F1554 Gr. 36'		V _{sa}	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
∕ STS G	Reduction factor, seismic shear	α _{v.seis}	-			0.6			-	-
AS- A	Strength reduction factor R for tension ²	R	-			0.80			-	-
I	Strength reduction factor R for shear ²	R	-			0.75			-	-
(7 5		N	lb	57,250	72,685	105,375	142,500	187,500	-	-
HD0	Nominal strength as governed by steel strength	N _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
HAS-E / HAS-E HDG ASTM F1554 Gr. 55'	Nominal strength as governed by steel strength	V	lb	34,350	43,610	63,225	85,500	112,500	-	-
		V _{sa}	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
∠ ⊑ ₩ E	Reduction factor, seismic shear		-	0.7 (3)					-	-
STI	Strength reduction factor R for tension ²	R	-	0.80					-	-
T <	Strength reduction factor R for shear ²	R	-	0.75					-	-
σ _π		N	lb	95,185	120,845	175,205	236,930	311,750	405,275	498,800
4 an	Nominal strength as governed by steel strength	N _{sa}	(kN)	(423.4)	(537.5)	779.3)	(1,053.9)	(1,386.7)	(1,802.7)	(2,218.8)
	Norminal strength as governed by steel strength	V	lb	57,110	72,505	105,125	142,160	187,050	243,165	299,280
k / HAS-E I A193 B STM F15t Gr. 105 ¹		V _{sa}	(kN)	(254.0)	(322.5)	(467.6)	(632.4)	(832.0)	(1,081.6)	(1,331.3)
A A A STI	Reduction factor, seismic shear	α _{v.seis}	-				0.7 (3)			
HAS-B / HAS-B HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹	Strength reduction factor R for tension ²	R	-	0.80						
	Strength reduction factor R for shear ²	R	-				0.75			
je (r		N _{sa}	lb	43,510	55,240	80,085	108,300	142,500	-	-
8(h	Nominal strength as governed by steel strength	sa	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
HAS-R Stainless Steel ASTM A193, Gr. 8(M), Class 1 ¹	Norminal strength as governed by steel strength	V _{sa}	lb	26,105	33,145	48,050	64,980	85,500	-	-
		v _{sa}	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)	-	-
A A CI	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
STM STM	Strength reduction factor R for tension ²	R	-	0.80					-	-
Ξ <	Strength reduction factor R for shear ²	R	-			0.75			-	-

1 Values provided for Hitti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be appropriate for rod strength. 2 For use with the load combinations of CSA A23.3-14 Clause 8.

3 For HIT-RE 500 V3, the value of α_{vseis} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

EXTENDED HILTI ANCHOR ROD PROGRAM LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14 ANNEX D

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10. The values are calculated from data on the previous page. This is intended for adhesive anchors designed in accordance with CSA A23.3-14 Annex D and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE. Bond strength design information for threaded rods larger than 1-1/4-inch diameter is currently only available for HIT-RE 500 V3.

Steel design strength for Hilti HAS Extended Anchor Rod Program for use with CSA A23.3 Annex D

		6-V / HAS-V F M F1554 Gr. (HAS-E / HAS-E HDG ASTM F1554 Gr. 55 ^{4,5,6}			B and HAS-B TM A193 B7 a 1 F 1554 Gr. 1	and	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴			
Nominal anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear ² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear ² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear ² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear ⁶ ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	
3/8	3,055	1,720	1,030	3,955	2,225	1,560	6,570	3,695	2,585	4,610	2,570	1,800	
	(13.6)	(7.7)	(4.6)	(17.6)	(9.9)	(6.9)	(29.2)	(16.4)	(11.5)	(20.5)	(11.4)	(8.0)	
1/2	5,595	3,150	1,890	7,240 (32.2)	4,070	2,850 (12.7)	12,035 (53.5)	6,765	4,735	8,445	4,705	3,295	
	(24.9) 8,915	(14.0) 5,015	(8.4) 3,010	(32.2)	(18.1) 6,485	4,540	19,160	(30.1) 10,780	(21.1)	(37.6) 13,445	(20.9)	(14.7) 5,245	
5/8	(39.7)	(22.3)	(13.4)	(51.3)	6,465 (28.8)	(20.2)	(85.2)	(48.0)	7,545 (33.6)	(59.8)	(33.3)	(23.3)	
	13,190	7,420	4,450	17,060	9,600	6,720	28,365	15,955	11,170	16,920	9,425	6,600	
3/4	(58.7)	(33.0)	(19.8)	(75.9)	(42.7)	(29.9)	(126.2)	(71.0)	(49.7)	(75.3)	(41.9)	(29.4)	
	18,210	10,245	6,145	23,550	13,245	9,270	39,150	22,020	15,415	23,350	13,010	9,105	
7/8	(81.0)	(45.6)	(27.3)	(104.8)	(58.9)	(41.2)	(174.1)	(97.9)	(68.6)	(103.9)	(57.9)	(40.5)	
	23,890	13,440	8,065	30,890	17,380	12,165	51,360	28,890	20,225	30,635	17,065	11,945	
1	(106.3)	(59.8)	(35.9)	(137.4)	(77.3)	(54.1)	(228.5)	(128.5)	(90.0)	(136.3)	(75.9)	(53.1)	
	30,105	16,930	10,160	38,930	21,900	15,330	64,725	36,410	25,485	29,585	16,640	9,985	
1-1/8	(133.9)	(75.3)	(45.2)	(173.2)	(97.4)	(68.2)	(287.9)	(162.0)	(113.4)	(131.6)	(74.0)	(44.4)	
	38,225	21,500	12,900	49,425	27,800	19,460	82,175	46,220	32,355	37,565	21,130	12,680	
1-1/4	(170.0)	(95.6)	(57.4)	(219.9)	(123.7)	(86.6)	(365.5)	(205.6)	(143.9)	(167.1)	(94.0)	(56.4)	
	55,415	31,170	18,700	71,655	40,305	28,215	119,140	67,015	46,910	54,460	30,630	18,380	
1-1/2	(246.5)	(138.7)	(83.2)	(318.7)	(179.3)	(125.5)	(530.0)	(298.1)	(208.7)	(242.2)	(136.2)	(81.8)	
1.0/4	74,935	42,150	25,290	96,900	54,505	38,155	161,110	90,625	63,435	73,645	41,425	24,855	
1-3/4	(333.3)	(187.5)	(112.5)	(431.0)	(242.4)	(169.7)	(716.6)	(403.1)	(282.2)	(327.6)	(184.3)	(110.6)	
2	98,600	55,460	33,275	127,500	71,720	50,205	211,990	119,245	83,470	96,900	54,505	32,705	
2	(438.6)	(246.7)	(148.0)	(567.1)	(319.0)	(223.3)	(943.0)	(530.4)	(371.3)	(431.0)	(242.4)	(145.5)	
2-1/4	-	-	-	-	-	-	275,585	155,020	108,515	-	-	-	
<u>2-1/4</u>	-	-	-	-	-	-	(1,225.9)	(689.6)	(482.7)	-	-	-	
2-1/2	-	-	-	-	-	-	339,185	190,790	133,555	-	-	-	
2-1/2	-	-	-	-	-	-	(1,508.8)	(848.7)	(594.1)	-	-	-	

Tensile = A_{sex} Φ₅ f_{ut} R as noted in CSA A23.3-14 Eq. D.2.
 Shear = A_{sex} Φ₅ f_{ut} R as noted in CSA A23.3-14 Eq. D.2.
 Shear = A_{sex} Φ₅ 0.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 0.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 Seismic Shear = α_{vest} Φ₅ 1.60 f_{ut} R as noted in CSA A23.3-14 Eq. D.31.
 HAS-E, HAS-E, HAS-B, and HAS-R (Class 1; 1-1/8-in to 2-in) threaded rods are considered ductile steel elements (included HDG rods).
 HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).
 HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).
 ABS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).

6 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

EXTENDED HILTI ANCHOR ROD PROGRAM TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD)

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10, used in conjunction with Hilti adhesive anchors that will be designed in accordance with the Allowable Stress Design Method (ASD). This includes Hilti HIT-HY 70 for masonry, HIT-HY 200 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules (must order threaded rods with chisel point for use with HVU Capsules).

Note: Hilti HAS-V A36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod is not available with a chisel point to break and mix the capsules during installation.

Allowable steel strength for the Hilti HAS Extended Anchor Rod Program ¹

Nominal anchor	· · ·	IAS-V HDG 554 Gr. 36 ²	HAS-E / H. ASTM F15	ASIM A193 B/ and			HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1-1/8-in to 2-in)		
diameter in.	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	
3/8	2,115	1,090	2,730	1,410	4,555	2,345	3,645	1,875	
3/0	(9.4)	(4.8)	(12.1)	(6.3)	(20.3)	(10.4)	(16.2)	(8.3)	
1/2	3,755	1,935	4,860	2,505	8,095	4,170	6,480	3,335	
1/2	(16.7)	(8.6)	(21.6)	(11.1)	(36.0)	(18.5)	(28.8)	(14.8)	
E /0	5,870	3,025	7,595	3,910	12,655	6,520	10,125	5,215	
5/8	(26.1)	(13.5)	(33.8)	(17.4)	(56.3)	(29.0)	(45.0)	(23.2)	
0/4	8,455	4,355	10,935	5,635	18,225	9,390	12,390	6,385	
3/4	(37.6)	(19.4)	(48.6)	(25.1)	(81.1)	(41.8)	(55.1)	(28.4)	
7/0	11,510	5,930	14,880	7,665	24,805	12,780	16,865	8,690	
7/8	(51.2)	(26.4)	(66.2)	(34.1)	(110.3)	(56.8)	(75.0)	(38.7)	
	15,035	7,745	19,440	10,015	32,400	16,690	22,030	11,350	
1	(66.9)	(34.5)	(86.5)	(44.5)	(144.1)	(74.2)	(98.0)	(50.5)	
1 1 /0	19,025	9,800	24,600	12,675	41,005	21,125	18,695	9,630	
1-1/8	(84.6)	(43.6)	(109.4)	(56.4)	(182.4)	(94.0)	(83.2)	(42.8)	
4 4 /4	23,490	12,100	30,375	15,645	50,620	26,080	23,085	11,890	
1-1/4	(104.5)	(53.8)	(135.1)	(69.6)	(225.2)	(116.0)	(102.7)	(52.9)	
1.1/0	33,825	17,425	43,735	22,530	72,895	37,550	33,240	17,125	
1-1/2	(150.5)	(77.5)	(194.5)	(100.2)	(324.3)	(167.0)	(147.9)	(76.2)	
1.0/4	46,035	23,715	59,530	30,665	99,220	51,110	45,245	23,305	
1-3/4	(204.8)	(105.5)	(264.8)	(136.4)	(441.4)	(227.3)	(201.3)	(103.7)	
0	60,130	30,975	77,755	40,055	129,590	66,760	59,095	30,440	
2	(267.5)	(137.8)	(345.9)	(178.2)	(576.4)	(297.0)	(262.9)	(135.4)	
0.1/4	-	-	-	-	164,015	84,490	-	-	
2-1/4	-	-	-	-	(729.6)	(375.8)	-	-	
0.1/0	-	-	-	-	202,485	104,310	-	-	
2-1/2	-	-	-	-	(900.7)	(464.0)	-	-	

1 Steel strength as defined in AISC Manual of Steel Construction (ASD):

Tensile = 0.33 x F x Nominal Area

Shear = 0.17 x F_u x Nominal Area

2 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

EXTENDED HILTI ANCHOR ROD PROGRAM TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD) - CONTINUED

The following steel design information is for the Hilti extended rod program according to the material specifications on page 10. The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design Method (ASD). This includes Hilti HIT-HY 70 for masonry, HIT-HY 200 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules (must order threaded rods with chisel point for use with HVU Capsules).

Note: Hilti HAS-V A36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod is not available with a chisel point to break and mix the capsules during installation.

Ultimate steel strength for the Hilti HAS Extended Anchor Rod Program¹

Nominal anchor		6-V / HAS-V F FM F1554 Gr.			6-E / HAS-E F M F1554 Gr.		AS	B and HAS-B TM A193 B7 a M F 1554 Gr.	and	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1-1/8-in to 2-in)			
diameter in.	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (kN)	Shear lb (kN)	
	2,790	4,800	2,880	4,265	6,210	3,725	8,140	10,350	6,210	5,040	8,280	4,970	
3/8	(12.4)	(21.4)	(12.8)	(19.0)	(27.6)	(16.6)	(36.2)	(46.0)	(27.6)	(22.4)	(36.8)	(22.1)	
1/0	5,110	8,540	5,125	7,805	11,040	6,625	14,900	18,405	11,040	9,225	14,725	8,835	
1/2	(22.7)	(38.0)	(22.8)	(34.7)	(49.1)	(29.5)	(66.3)	(81.9)	(49.1)	(41.0)	(65.5)	(39.3)	
E /0	8,135	13,345	8,005	12,430	17,260	10,355	23,730	28,765	17,260	14,690	23,010	13,805	
5/8	(36.2)	(59.4)	(35.6)	(55.3)	(76.8)	(46.1)	(105.6)	(128.0)	(76.8)	(65.3)	(102.4)	(61.4)	
0.44	12,040	19,220	11,530	18,400	24,850	14,910	35,125	41,420	24,850	15,055	28,165	16,900	
3/4	(53.6)	(85.5)	(51.3)	(81.8)	(110.5)	(66.3)	(156.2)	(184.2)	(110.5)	(67.0)	(125.3)	(75.2)	
7.0	16,620	26,155	15,695	25,395	33,825	20,295	48,480	56,370	33,825	20,775	38,335	23,000	
7/8	(73.9)	(116.3)	(69.8)	(113.0)	(150.5)	(90.3)	(215.6)	(250.7)	(150.5)	(92.4)	(170.5)	(102.3)	
	21,805	34,165	20,500	33,315	44,180	26,505	63,600	73,630	44,180	27,255	50,070	30,040	
1	(97.0)	(152.0)	(91.2)	(148.2)	(196.5)	(117.9)	(282.9)	(327.5)	(196.5)	(121.2)	(222.7)	(133.6)	
1-1/8	27,480	43,240	25,945	41,980	55,915	33,550	80,145	93,190	55,915	22,900	42,495	25,495	
1-1/0	(122.2)	(192.3)	(115.4)	(186.7)	(248.7)	(149.2)	(356.5)	(414.5)	(248.7)	(101.9)	(189.0)	(113.4)	
1 1/4	34,890	53,385	32,030	53,300	69,030	41,420	101,755	115,050	69,030	29,075	52,465	31,480	
1-1/4	(155.2)	(237.5)	(142.5)	(237.1)	(307.1)	(184.2)	(452.6)	(511.8)	(307.1)	(129.3)	(233.4)	(140.0)	
1 1 /0	50,590	76,870	46,125	77,290	99,400	59,640	147,550	165,670	99,400	42,160	75,545	45,325	
1-1/2	(225.0)	(341.9)	(205.2)	(343.8)	(442.2)	(265.3)	(656.3)	(736.9)	(442.2)	(187.5)	(336.0)	(201.6)	
1-3/4	68,380	104,630	62,780	104,470	135,295	81,180	199,445	225,495	135,295	56,985	102,825	61,695	
1-3/4	(304.2)	(465.4)	(279.3)	(464.7)	(601.8)	(361.1)	(887.2)	(1,003.0)	(601.8)	(253.5)	(457.4)	(274.4)	
2	89,935	136,660	81,995	137,400	176,715	106,030	262,315	294,525	176,715	74,945	134,305	80,580	
2	(400.0)	(607.9)	(364.7)	(611.2)	(786.1)	(471.6)	(1,166.8)	(1,310.1)	(786.1)	(333.4)	(597.4)	(358.4)	
0.1/4	-	-	-	-	-	-	341,005	372,755	223,655	-	-	-	
2-1/4	-	-	-	-	-	-	(1,516.9)	(1,658.1)	(994.9)	-	-	-	
0.1/0	-	-	-	-	-	-	419,875	460,195	276,115	-	-	-	
2-1/2	-	-	-	-	-	-	(1,867.7)	(2,047.0)	(1,228.2)	-	-	-	

1 Steel strength as defined in AISC Manual of Steel Construction (LRFD):

The steep strength as defined in Also watch of Steep Construction (LRPD): Yield = F_y x Tensile stress area Tensile = $0.75 \times F_y$ x Nominal Area Shear = $0.45 \times F_y$ x Nominal Area 2 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

EXTENDED HILTI ANCHOR ROD PROGRAM **ORDERING INFORMATION**

The following threaded rod ordering information is for the Hilti extended rod program according to the material specifications on page 10.

					Exte	nded special ro	bas onering				
					Electro plated		Н	ot dip galvanize	ed	Stainles	s steel
		Min. length in.	Max. length in.	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	SS304	SS316
	3/8 ¹	2	144								
	1/2	2	144								
	5/8	3	144								
(;	3/4	4	144								
ter (ir	7/8	4	144								
iame	1	5	144								
Nominal anchor diameter (in.)	1-1/8	6	144								
anc	1-1/4	6	144								
minal	1-1/2	8	144								
٩	1-3/4	9	144								
	2	11	144								
	2-1/4	12	144								
	2-1/2	13	144								

Extended special rods offering

= typical lead time 2-4 working days plus shipping² = available but longer lead time

1 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

2 up to following quantities: 3/8" to 3/4" > 250 pieces, 7/8" to 1-1/4" > 100 pieces, 1-1/2" to 2-1/2" > 50 pieces. Bigger quantities contact Hilti for lead time.

Hilti threa	aded rods in the Hilti Extended Anchor Rod Program are stamped on the end to show grade of steel.	TWO END CUT OPTIONS AVAIL
HV	HAS-V / HAS-V HDG ASTM F1554, Grade 36	(D
HE	HAS-E / HAS-E HDG ASTM F1554, Grade 55	Chisel, or angle cut
H B	HAS-B / HAS-B HDG ASTM A193, Grade B7 ASTM F1554, Grade 105	Straight, or flat cut
SS304 H R1	HAS-R 304SS 3/8-in. to 5/8-in. AISI Type 304 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 304 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8, Class 1	
SS316 H R2	HAS-R 316SS 3/8-in. to 5/8-in. AISI Type 316 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 316 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8M, Class 1	

AILABLE

DBS • 02/18

Hilti, Inc. (U.S.) 1-800-879-8000 en español 1-800-879-5000 www.hilti.com

Hilti (Canada) Corporation 1-800-363-4458 www.hilti.ca